routine, generating - ترجمة إلى العربية
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

routine, generating - ترجمة إلى العربية

FORMAL POWER SERIES WITH COEFFICIENTS THAT ENCODE INFORMATION ABOUT A SEQUENCE
Exponential generating function; Generating functions; Generator function; Ordinary generating function; Ordinary generating functions; Generating functional; Poisson generating function; Generating Function; Examples of generating functions; Generating Function/Examples; Generating function/Examples; Generating polynomial; Bivariate generating function; Dirichlet generating function; Generating series; Snake oil method; Exponential generating series

routine, generating      
روتين مولد
Generating         
WIKIMEDIA DISAMBIGUATION PAGE
Generating (disambiguation)
مولد كهربائي ، مولد طاقة
GENERATING         
WIKIMEDIA DISAMBIGUATION PAGE
Generating (disambiguation)

ألاسم

إِبْداع ; إثارة ; إِحْداث ; إِنْشاء ; إِيجاد ; اِبْتِدَاع ; اِخْتِرَاع ; اِسْتِحْداث ; بَدْع ; بَرْء ; تَأْسِيس ; تَوْليد ; مُوَلِّد

الفعل

أَبْدَأَ ; أَدَّى إلى ; أَنْشَأَ ; أَهَلَّ ; أَوْجَدَ ; اِبْتَدَأَ ; اِسْتَفْتَحَ ; اِسْتَهَلَّ ( الشَّيْءُ ) ; اِفْتَتَحَ ; بَدَأَ ; تَسَبَّبَ فِي أو بِـ ; دَخَلَ في ; ساعَدَ على ; سَبَّبَ ; شَرَعَ ( فِي ) ; هَلَّ

تعريف

routine
n. (a) daily, ordinary; dull routine

ويكيبيديا

Generating function

In mathematics, a generating function is a way of encoding an infinite sequence of numbers (an) by treating them as the coefficients of a formal power series. This series is called the generating function of the sequence. Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers.

There are various types of generating functions, including ordinary generating functions, exponential generating functions, Lambert series, Bell series, and Dirichlet series; definitions and examples are given below. Every sequence in principle has a generating function of each type (except that Lambert and Dirichlet series require indices to start at 1 rather than 0), but the ease with which they can be handled may differ considerably. The particular generating function, if any, that is most useful in a given context will depend upon the nature of the sequence and the details of the problem being addressed.

Generating functions are often expressed in closed form (rather than as a series), by some expression involving operations defined for formal series. These expressions in terms of the indeterminate x may involve arithmetic operations, differentiation with respect to x and composition with (i.e., substitution into) other generating functions; since these operations are also defined for functions, the result looks like a function of x. Indeed, the closed form expression can often be interpreted as a function that can be evaluated at (sufficiently small) concrete values of x, and which has the formal series as its series expansion; this explains the designation "generating functions". However such interpretation is not required to be possible, because formal series are not required to give a convergent series when a nonzero numeric value is substituted for x. Also, not all expressions that are meaningful as functions of x are meaningful as expressions designating formal series; for example, negative and fractional powers of x are examples of functions that do not have a corresponding formal power series.

Generating functions are not functions in the formal sense of a mapping from a domain to a codomain. Generating functions are sometimes called generating series, in that a series of terms can be said to be the generator of its sequence of term coefficients.